Home
Class 12
MATHS
In !ABC it is given that a:b:c = cos A:c...

In `!ABC` it is given that a:b:c = cos A:cos B:cos C
Statement-1: `!ABC` is equilateral.
Statement-2: cosA`=(b^(2)+c^(2)-a^(2))/(2bc),cosB=(c^(2)+a^(2)-b^(2))/(2ac),cosC=(a^(2)+b^(2)-c^(2))/(2ab)`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

Verified by Experts

Clearly, statement-2 is true.
Now, a:b: c =cos A: cos B:cosC
`rArra/(cosA)=b/(cosB)=c/(cosC)`
`rArr(2abc)/(b^(2)+c^(2)-a^(2))=(2abc)/(c^(2)+a^(2)-b^(2))=(2abc)/(a^(2)+b^(2)-c^(2))`
`rArrb^(2)+c^(2)-a^(2)=c^(2)+a^(2)-b^(2)=a^(2)+b^(2)-c^(2)`
`rArrb^(2)-a^(2)=a^(2)-b^(2)` and `c^(2)-b^(2)=b^(2)-c^(2)`
`rArra^(2)=b^(2)=c^(2)rArra=b=crArr!ABC` is equilateral.
So statement-1 is also true and statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Exercise|98 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

(cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In triangle ABC,a(b^(2)+c^(2))cos A+b(c^(2)+a^(2))cos B+c(a^(2)+b^(2))cos C=

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In Delta ABC, prove that (b^(2)-c^(2))/(a)cos A + (c^(2)-a^(2))/(b)cos B + (a^(2) - b^(2))/(c) cos C = 0

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

If any triangle ABC, that: (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

In any Delta ABC, prove that: (cos^(2)((A)/(2)))/(a)+(cos^(2)((B)/(2)))/(b)+(cos^(2)((c)/(2)))/(c)=(s^(3))/(abc)

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

In a triangle ABC,bc cos^(2)(A)/(2)+ca cos^(2)(B)/(2)+ab cos^(2)(C)/(2)=

In /_ABC prove that (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0