Home
Class 12
MATHS
If in a triangle ABC , 2(cosA)/a+(cosB)...

If in a triangle ABC ,
`2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca)`,
then the value of the angle A, is

A

`pi//3`

B

`pi//4`

C

`pi//2`

D

`pi//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem: \[ 2 \frac{\cos A}{a} + \frac{\cos B}{b} + 2 \frac{\cos C}{c} = \frac{a}{bc} + \frac{b}{ca} \] we will use the cosine rule and properties of triangles. ### Step 1: Use the Cosine Rule The cosine rule states that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step 2: Substitute Cosine Values Substituting the values of \(\cos A\), \(\cos B\), and \(\cos C\) into the equation: \[ 2 \frac{\frac{b^2 + c^2 - a^2}{2bc}}{a} + \frac{\frac{a^2 + c^2 - b^2}{2ac}}{b} + 2 \frac{\frac{a^2 + b^2 - c^2}{2ab}}{c} \] This simplifies to: \[ \frac{b^2 + c^2 - a^2}{a \cdot bc} + \frac{a^2 + c^2 - b^2}{2abc} + \frac{2(a^2 + b^2 - c^2)}{2abc} \] ### Step 3: Combine Terms Now combine the terms on the left-hand side: \[ \frac{b^2 + c^2 - a^2 + a^2 + c^2 - b^2 + 2(a^2 + b^2 - c^2)}{2abc} \] This simplifies to: \[ \frac{3b^2 + a^2 + c^2 - 2c^2}{2abc} = \frac{3b^2 + a^2 - c^2}{2abc} \] ### Step 4: Right-Hand Side Now, simplify the right-hand side: \[ \frac{a}{bc} + \frac{b}{ca} = \frac{a^2 + b^2}{abc} \] ### Step 5: Set Both Sides Equal Now we equate both sides: \[ \frac{3b^2 + a^2 - c^2}{2abc} = \frac{a^2 + b^2}{abc} \] ### Step 6: Cross Multiply Cross-multiplying gives: \[ 3b^2 + a^2 - c^2 = 2(a^2 + b^2) \] ### Step 7: Rearranging the Equation Rearranging gives: \[ 3b^2 + a^2 - c^2 = 2a^2 + 2b^2 \] \[ b^2 - a^2 - c^2 = 0 \] ### Step 8: Recognizing a Right Triangle This implies: \[ b^2 + c^2 = a^2 \] This is the Pythagorean theorem, which indicates that triangle ABC is a right triangle with angle A being the right angle. ### Conclusion Thus, the value of angle A is: \[ \boxed{90^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

If in a DeltaABC, 2(cosA)/(a)+(cosB)/(b)+(2cosC)/(c)=(a)/(bc)+(b)/(ca) Then, the value of the angleA is ...... Degree

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

In triangleABC, 2(bc cosA+ac cosB+ab cosC)=

In a triangle ABC If (2cos A)/(a)+(cos B)/(b)+(2cos C)/(c)=(a)/(bc)+(b)/(ca) find the angle A .

If in a triangle ABC,(2cos A)/(a)+(cos B)/(b)+(2cos C)/(b)=(a)/(bc)+(b)/(ca), then prove that the triangle is right angled.

In Delta ABC If: 2(cosA)/a + (cos B)/(b) + 2(cosC)/(c) = a/(bc) + b/(ca) , then: /_A =

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

OBJECTIVE RD SHARMA-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. If twice the square of the diameter of the circle is equal to half the...

    Text Solution

    |

  2. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  3. If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca), ...

    Text Solution

    |

  4. If A gt 0 ,B gt 0 and A+B=pi/3,then the maximum value of tan A tan B ,...

    Text Solution

    |

  5. If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P.,then costhe...

    Text Solution

    |

  6. If sin beta is the GM between sin alpha and cos alpha, then cos 2beta ...

    Text Solution

    |

  7. If sinA=sin^2Band2cos^2A=3cos^2B then the triangle ABC is right angled...

    Text Solution

    |

  8. If in a !ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

    Text Solution

    |

  9. In a !ABC , sin A + sin B + sin C = 1+sqrt2 and ,cos A +cos B +cos C =...

    Text Solution

    |

  10. Point D,E are taken on the side BC of an acute angled triangle ABC,, s...

    Text Solution

    |

  11. In a triangle ABC, if 3a = b+c, then the value of cot ""(B)/(2) cot ""...

    Text Solution

    |

  12. If A+ B+ C=pi, nin Z,then tan nA+ tan +nB +tan nC is equal to

    Text Solution

    |

  13. If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A...

    Text Solution

    |

  14. In a triangle ABC ,cos A + cos B + cos C =3/2, then the triangle ,is

    Text Solution

    |

  15. In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove th...

    Text Solution

    |

  16. If in a triangle ABC ,(b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal t...

    Text Solution

    |

  17. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  18. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  19. P(1), P(2), P(3) are altitudes of a triangle ABC from the vertices A, ...

    Text Solution

    |

  20. If median of the DeltaABC through A is perpendicular to BC, then which...

    Text Solution

    |