Home
Class 12
MATHS
If A,B,C are angles of a triangle ,then ...

If A,B,C are angles of a triangle ,then the minimum value of `tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2)` , is

A

0

B

1

C

`1//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) \) where \( A, B, C \) are the angles of a triangle, we can follow these steps: ### Step 1: Use the identity for angles in a triangle Since \( A + B + C = 180^\circ \), we can express one angle in terms of the others. For example, we can write: \[ C = 180^\circ - A - B \] ### Step 2: Apply the tangent half-angle formula Using the tangent half-angle formula, we have: \[ \tan\left(\frac{C}{2}\right) = \tan\left(\frac{180^\circ - A - B}{2}\right) = \cot\left(\frac{A + B}{2}\right) \] ### Step 3: Use the cotangent identity The cotangent can be expressed in terms of tangent: \[ \cot\left(\frac{A + B}{2}\right) = \frac{1}{\tan\left(\frac{A + B}{2}\right)} \] ### Step 4: Establish a relationship Using the identity \( \tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) + \tan\left(\frac{C}{2}\right) = \tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) + \cot\left(\frac{A + B}{2}\right) \), we can derive: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) + \tan\left(\frac{B}{2}\right) \tan\left(\frac{C}{2}\right) + \tan\left(\frac{C}{2}\right) \tan\left(\frac{A}{2}\right) = 1 \] ### Step 5: Use the Cauchy-Schwarz inequality Applying the Cauchy-Schwarz inequality: \[ (\tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right))(1 + 1 + 1) \geq (\tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) + \tan\left(\frac{C}{2}\right))^2 \] This simplifies to: \[ 3(\tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right)) \geq 1 \] ### Step 6: Solve for the minimum value From the above inequality, we can conclude: \[ \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) \geq \frac{1}{3} \] However, since we are looking for the minimum value of the sum of squares, we can find that the minimum occurs when \( A = B = C = 60^\circ \): \[ \tan^2\left(\frac{60^\circ}{2}\right) = \tan^2(30^\circ) = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Thus, the minimum value is: \[ 3 \times \frac{1}{3} = 1 \] ### Final Answer The minimum value of \( \tan^2\left(\frac{A}{2}\right) + \tan^2\left(\frac{B}{2}\right) + \tan^2\left(\frac{C}{2}\right) \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If tan(A/2),tan(B/2),tan(C/2) are in H.P , where A,B,C are angles of a triangle, then the minimum value of cot^(2)(B/2) is

If A, B, C be an acute angled triangle, then the minimum value of tan^(4)A+tan^(4)B+tan^(4)C will be

In triangle ABC ,prove that the maximum value of tan(A)/(2)tan(B)/(2)tan(C)/(2)is(R)/(2s)

(tan(B/2)-tan(C/2))/(tan(B/2)+tan(C/2))

s^(2)tan((A)/(2))tan((B)/(2))tan((C)/(2))

In triangle ABC, if r_(1)=3r, then the value of tan((A)/(2))(tan((B)/(2))+tan((C)/(2))) is equal to

If tan A and tan B are the roots of abx^(2)-c^(2)x+ab=0 where a,b,c are the sides of the triangle ABC then the value of sin^(2)A+sin^(2)B+sin^(2)C is

If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan""(B+C)/(2) +cos""(A+B)/(2) *csc""(C)/(2)=

In /_ABC with usual notations,if a,b,c are in A.P.then the numerical value of tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2)) is

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

OBJECTIVE RD SHARMA-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Exercise
  1. In a triangle ABC, if 3a = b+c, then the value of cot ""(B)/(2) cot ""...

    Text Solution

    |

  2. If A+ B+ C=pi, nin Z,then tan nA+ tan +nB +tan nC is equal to

    Text Solution

    |

  3. If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A...

    Text Solution

    |

  4. In a triangle ABC ,cos A + cos B + cos C =3/2, then the triangle ,is

    Text Solution

    |

  5. In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove th...

    Text Solution

    |

  6. If in a triangle ABC ,(b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal t...

    Text Solution

    |

  7. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  8. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  9. P(1), P(2), P(3) are altitudes of a triangle ABC from the vertices A, ...

    Text Solution

    |

  10. If median of the DeltaABC through A is perpendicular to BC, then which...

    Text Solution

    |

  11. In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)), then a^(2), b^(2)...

    Text Solution

    |

  12. If in a !ABC ,a tan A + btanB =(a + b) tan((A+B)/2) , then

    Text Solution

    |

  13. If in a !ABC , cosA=(sinB)/(2sinC) then the !ABC , is

    Text Solution

    |

  14. If in a triangle ABC,(a^(2)-b^(2))/(a^(2)+b^(2)) then the triangle is

    Text Solution

    |

  15. If in a triangle ABC, b + c = 3a, then tan(B/2)tan(C/2) is equal to

    Text Solution

    |

  16. Let ABC be a triangle such that angle A =45^(@) , angle B =75^(@), the...

    Text Solution

    |

  17. If in a DeltaABC , cos A + 2 cosB+cosC= 2, then a,b, c are in

    Text Solution

    |

  18. If the altitudes of a triangle are in A.P,then the sides of the triang...

    Text Solution

    |

  19. In any !ABC ,the distance of the orthocentre from the vertices A, B,C ...

    Text Solution

    |

  20. If R is the radius of circumscribing circle of a regular polygon of n-...

    Text Solution

    |