Home
Class 12
MATHS
In in a triangle ABC, sides a,b,c are in...

In in a `triangle ABC`, sides a,b,c are in A.P. then `tan""A/2 tan""C/2`

A

`1//4`

B

`1//3`

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \frac{A}{2} \tan \frac{C}{2} \) given that the sides \( a, b, c \) of triangle \( ABC \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Condition**: Since \( a, b, c \) are in A.P., we can express them as: \[ a = b - d, \quad b = b, \quad c = b + d \] for some common difference \( d \). 2. **Finding the Semi-Perimeter \( S \)**: The semi-perimeter \( S \) of triangle \( ABC \) is given by: \[ S = \frac{a + b + c}{2} = \frac{(b - d) + b + (b + d)}{2} = \frac{3b}{2} \] 3. **Using the Half-Angle Tangent Formula**: The half-angle tangent formulas for angles \( A \) and \( C \) are: \[ \tan \frac{A}{2} = \sqrt{\frac{(S - a)(S - b)}{S(S - c)}}, \quad \tan \frac{C}{2} = \sqrt{\frac{(S - c)(S - b)}{S(S - a)}} \] 4. **Substituting Values**: Now, we substitute \( S = \frac{3b}{2} \), \( a = b - d \), \( b = b \), and \( c = b + d \): \[ S - a = \frac{3b}{2} - (b - d) = \frac{3b}{2} - b + d = \frac{b}{2} + d \] \[ S - b = \frac{3b}{2} - b = \frac{b}{2} \] \[ S - c = \frac{3b}{2} - (b + d) = \frac{3b}{2} - b - d = \frac{b}{2} - d \] 5. **Calculating \( \tan \frac{A}{2} \tan \frac{C}{2} \)**: Now we can calculate: \[ \tan \frac{A}{2} = \sqrt{\frac{\left(\frac{b}{2} + d\right) \left(\frac{b}{2}\right)}{\frac{3b}{2} \left(\frac{b}{2} - d\right)}} \] \[ \tan \frac{C}{2} = \sqrt{\frac{\left(\frac{b}{2} - d\right) \left(\frac{b}{2}\right)}{\frac{3b}{2} \left(\frac{b}{2} + d\right)}} \] 6. **Multiplying the Two Expressions**: Now we multiply \( \tan \frac{A}{2} \) and \( \tan \frac{C}{2} \): \[ \tan \frac{A}{2} \tan \frac{C}{2} = \sqrt{\frac{\left(\frac{b}{2} + d\right) \left(\frac{b}{2}\right)}{\frac{3b}{2} \left(\frac{b}{2} - d\right)}} \cdot \sqrt{\frac{\left(\frac{b}{2} - d\right) \left(\frac{b}{2}\right)}{\frac{3b}{2} \left(\frac{b}{2} + d\right)}} \] Simplifying this gives: \[ = \frac{\frac{b^2}{4} - d^2}{\frac{3b^2}{4}} = \frac{b^2 - 4d^2}{3b^2} \] 7. **Final Result**: Since \( a, b, c \) are in A.P., we can conclude that: \[ \tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{3} \] ### Conclusion: Thus, the final result is: \[ \tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Exercise|98 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If in Delta ABC , sides a, b, c are in A.P. then

In Delta ABC, if a,b,c are in A.P.then (tan A)/(2),(tan B)/(2),(tan C)/(2) are in

In any triangle ABC , if a^2,b^2,c^2 are in AP then that cot A , cot B , cot C are in are in A.P.

In triangle ABC if a, b, c are in A.P., then the value of (sin.(A)/(2)sin.(C)/(2))/(sin.(B)/(2)) =

If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in G.P., then prove that a^2, b^2,c^2 are in A.P.

If in a Delta ABC,a,b,c are in A.P. then it is necessary that

If in a Delta ABC,sin A,sin B,sin C are in A.P. show that 3tan,(A)/(2)tan,(C)/(2)=1

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

OBJECTIVE RD SHARMA-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Chapter Test
  1. In a triangleABC, a^(2) sin 2C+c^(2) sin 2A=

    Text Solution

    |

  2. In a triangleABC, (cos C+cos A)/(c+a)+(cos B)/(b)=

    Text Solution

    |

  3. In in a triangle ABC, sides a,b,c are in A.P. then tan""A/2 tan""C/2

    Text Solution

    |

  4. In a triangle ABC, cos A+cos B+cos C=

    Text Solution

    |

  5. If A+B+C =pi, and cos A = cos B. cos C, then cot B. cot C =

    Text Solution

    |

  6. In triangle ABC,a(b^2+c^2)cos A+b(c^2+a^2)cosB+c(a^2+b^2)cosC=

    Text Solution

    |

  7. The sides of a triangle are x^2+x+1,2x+1,a n dx^2-1 . Prove that the g...

    Text Solution

    |

  8. In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

    Text Solution

    |

  9. In a triangleABC, if a,c,b are in A.P. then the value of (a cos B-b co...

    Text Solution

    |

  10. If a triangle is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  11. If the angle of a righta angled triangle are in A.P. then the ratio of...

    Text Solution

    |

  12. If the angles of a triangle are in the ratio 7:2:1, then prove that th...

    Text Solution

    |

  13. If in DeltaABC, a = 5, b = 4 and cos (A - B) = 31/32, then

    Text Solution

    |

  14. In a triangleABC"if c"=(a+b) sin theta and cos theta=(ksqrtab)/(a+b),"...

    Text Solution

    |

  15. In triangleABC," if"(s-a)/(Delta)=1/8, (s-b)/(Delta)=1/12 and (s-c)/(D...

    Text Solution

    |

  16. In a triangle ABC if 2a=sqrt(3)b+c, then possible relation is

    Text Solution

    |

  17. If in a triangle A B C ,acos^2(C/2)ccos^2(A/2)=(3b)/2, then the sides ...

    Text Solution

    |

  18. The sides of a right angled triangle arein A.P, then they are in the ...

    Text Solution

    |

  19. ln a triangle ABC, B=90^@ then the value of tan(A/2)=

    Text Solution

    |

  20. ln a triangle ABC, B=90^@ then the value of tan(A/2)=

    Text Solution

    |