Home
Class 12
MATHS
Statement -1:If exp {("sin"^(2)x + "...

Statement -1:If
exp `{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] " satisfie the equation" x^(2)-9x +8=0, "then " ("cos"x)/("cos" x + "sin"x) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2)`.
Statement-2: The sum `"sin"^(2) x + "sin"^(4)x + "sin"^(6) x + .... oo` is equal to `"tan"^(2)x`

A

Statement -1 is true, Statement-2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement -1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement-1 is True, Statement-2 is False.

D

Statement -1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`"sin"^(2)x + "sin"^(4)x + "sin"^(6)x + … "in"f= ("sin"^(2)x)/(1-"sin"^(2)x) = "tan"^(2) x`
So, statement -2 is true.
Using statement -2, we have
`"exp"{"(sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2]`
` =e^(("tan"^(2)x) "log"_(e)2) = 2^("tan"^(2)x)`
It is given that `2^("tan"^(2)x)` satisfies the equation `x^(2) -9x + 8=0`
`therefore 2^("tan"^(2)x) = 2^(3) "or" 2^("tan"^(2)x) = 1`
`rArr "tan"^(2) x = 3 "or tan"^(2)x =0`
`rArr "tan" x = sqrt(3) rArr x = (pi)/(3) " " [because 0 le x le (pi)/(2)]`
`therefore ("cos"x)/("cos" x + "sin"x) = (1)/( 1 +"tan"x) = (1)/(1+sqrt(3)) = (sqrt(3)-1)/(2)`
So, statement-1 is true. Also, statement -2 is a correct explanation for statement-1.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|66 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If exp(sin^(2)x+sin^(4)x+sin^(6)x....... upto oo)log_(e)2 satisfies the equation x^(2)-17x+16=0 then the value of (2cos x)/(sin x+2cos x),(0

If e^((sin^(2)x+sin^(4)x+sin^(6)x+...oo)ln2) satisfies the equation x^(2)-9x+8=0 find the value of (cos x)/(cos x+sin x),0

Knowledge Check

  • If exp. {(sin^(2) x + sin^(4)x + sin^(6) x +.."inf") log_(e) 2} satisfies the equation x^(2) - 9x + 8 = 0 , then the value of (cos x)/(cos x + sin x), 0 lt x lt (pi)/(2) is

    A
    `(1)/(2) (sqrt(3) + 1)`
    B
    `(1)/(2) (sqrt(3) - 1)`
    C
    0
    D
    none of these
  • If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

    A
    `sqrt(3)+1 `
    B
    `(sqrt(3)-1)/(2)`
    C
    `sqrt(3)-1 `
    D
    None of these
  • If e^({(sin^2 x + sin^4x + sin^6x+...oo)log_e2}) satisfies the equation x^2 - 9x + 8 = 0 , then value of (cosx)/(cosx+sinx ), 0 le x le pi/2 is

    A
    `1/2 (sqrt3+1)`
    B
    `1/2(sqrt3 -1)`
    C
    `1/2`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If exp [sin^(2)x+sin^(4)x+sin^(6)x+….infty)ln 2] satisfies the equation y^(2)-9y+8=0 and the value of (cosx)/(cos x+sin x),0 lt x lt (pi)/(2) is (1)/(1+sqrt(k)) then the value of k is _________

    If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

    If e^(( cos^2 x + cos^4x+ cos ^6 x + ……..oo ) log_e 2) satisfies the equation t^2 - 9t + 8=0 , then the value of ( 2 sin x)/( sin x + sqrt(3) cos x) ( 0 lt x lt (pi)/(2)) is

    If e^((sin^2x+sin^4x+sin^6x+..." upto" oo)In 2) satisfies the equation y^2-5y+4=0," then "(sin x)/(cos x-sin x) is equal to

    If cos x + cos^2x =1 , then sin^4 x + 2 sin^6 x + sin^4x is equal to