Home
Class 12
MATHS
Statement -1: If 2"sin"2x - "cos" 2x=1, ...

Statement -1: If `2"sin"2x - "cos" 2x=1, x ne (2n+1) (pi)/(2), n in Z, "then sin" 2x + "cos" 2x = 5`
Statement-2: `"sin"2x + "cos"2x = (1+2"tan" x - "tan"^(2)x)/(1+"tan"^(2)x)`

A

Statement -1 is true, Statement-2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement -1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement-1 is True, Statement-2 is False.

D

Statement -1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`"sin" 2x = (2"tan"x)/(1+"tan"^(2)x)" and cos" 2x = (1-"tan"^(2)x)/(1+"tan"^(2)x)`
`therefore "sin"2x+ "cos" 2x = (1+2"tan"x - "tan"^(2)x)/(1+"tan"^(2)x)`
So, statement-2 is true.
Let us now consider statement-1.
We have, `2"sin" 2x-"cos" 2x = 1`
`rArr 2"sin" 2x = 2"cos"^(2)x`
`rArr 2"sin" x "cos" x = "cos"^(2) x`
`rArr "tan" x = (1)/(2) " " [because x ne (2n + 1)(pi)/(2) therefore "cos" x ne 0]`
`therefore "sin"2x + "cos"2x = (1+2"tan"x-"tan"^(2)x)/(1+"tan"^(2)x)`
`rArr "sin" 2x + "cos"2x = (2-(1)/(4))/(1+(1)/(4)) = (7)/(5)`
So, statement-1 is not correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|66 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If f (tan x) = cos 2x , x != (2n + 1) pi/2, n in I then incorrect statement is

If x ne (n pi)/(2), n in Z " and "("cos"x)^("sin"^2 x-3 "sin" x + 2) = 1 " Then," x =

(sin2x)/(1+cos2x)=tan x

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

If sin x+cos x=(1)/(5), then tan 2x is

Prove that (1+ sin 2x - cos 2x)/(1+ sin 2x + cos 2x) =tan x

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :