Home
Class 12
MATHS
The general solution of "tan" ((pi)/(2)"...

The general solution of `"tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"cos"theta)`, is

A

`theta= 2r pi + (pi)/(2)`

B

`theta =2r pi`

C

`theta =2r pi + (pi)/(2) " and " theta = 2r pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan\left(\frac{\pi}{2} \sin \theta\right) = \cot\left(\frac{\pi}{2} \cos \theta\right) \), we can follow these steps: ### Step 1: Rewrite the cotangent We know that \( \cot x = \frac{1}{\tan x} \). Therefore, we can rewrite the equation as: \[ \tan\left(\frac{\pi}{2} \sin \theta\right) = \frac{1}{\tan\left(\frac{\pi}{2} \cos \theta\right)} \] ### Step 2: Cross multiply Cross multiplying gives us: \[ \tan\left(\frac{\pi}{2} \sin \theta\right) \tan\left(\frac{\pi}{2} \cos \theta\right) = 1 \] ### Step 3: Use the identity We know that \( \tan A \tan B = 1 \) implies \( A + B = \frac{\pi}{2} + n\pi \) for some integer \( n \). Thus, we have: \[ \frac{\pi}{2} \sin \theta + \frac{\pi}{2} \cos \theta = \frac{\pi}{2} + n\pi \] ### Step 4: Simplify the equation Dividing the entire equation by \( \frac{\pi}{2} \): \[ \sin \theta + \cos \theta = 1 + 2n \] ### Step 5: Rearranging Rearranging gives us: \[ \sin \theta + \cos \theta - 1 = 2n \] ### Step 6: Use the identity for sine and cosine Using the identity \( \sin \theta + \cos \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \): \[ \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) - 1 = 2n \] ### Step 7: Solve for \( \sin\left(\theta + \frac{\pi}{4}\right) \) Rearranging gives: \[ \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) = 2n + 1 \] Thus, \[ \sin\left(\theta + \frac{\pi}{4}\right) = \frac{2n + 1}{\sqrt{2}} \] ### Step 8: General solution The general solution for \( \sin x = k \) is given by: \[ x = \arcsin(k) + 2m\pi \quad \text{or} \quad x = \pi - \arcsin(k) + 2m\pi \] Applying this to our equation, we have: \[ \theta + \frac{\pi}{4} = \arcsin\left(\frac{2n + 1}{\sqrt{2}}\right) + 2m\pi \quad \text{or} \quad \theta + \frac{\pi}{4} = \pi - \arcsin\left(\frac{2n + 1}{\sqrt{2}}\right) + 2m\pi \] ### Step 9: Isolate \( \theta \) From these, we can isolate \( \theta \): 1. \( \theta = \arcsin\left(\frac{2n + 1}{\sqrt{2}}\right) - \frac{\pi}{4} + 2m\pi \) 2. \( \theta = \pi - \arcsin\left(\frac{2n + 1}{\sqrt{2}}\right) - \frac{\pi}{4} + 2m\pi \) ### Final General Solution The final general solution can be expressed as: \[ \theta = 2n\pi + \frac{\pi}{4} \quad \text{or} \quad \theta = 2n\pi + \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Solve tan((pi)/(2)cos theta)=cot((pi)/(2)sin theta)

General solution of tantheta+tan((pi)/(2)-theta)=2 is

tan (pi cos theta) = cot (pi sin theta)

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is

The number of solutions of tan(5 pi cos theta)=cot(5 pi sin theta) for theta in[0,pi]

One of the general solutions of sqrt(3)cos theta-3sin theta=4sin2 theta cos3 theta is m pi+(pi)/(18),m in Z(m pi)/(2)+(pi)/(6),AA m in Zm(pi)/(3)+(pi)/(18),m in Z none of these

The general solution of the equation 7cos^(2)theta+3sin^(2)theta=4 is theta=2n pi+-(pi)/(6),nZ b.theta=2n pi+-(2 pi)/(3),nZ c.theta=2n pi+-(pi)/(3),nZ d.none of these

x cot((pi)/(2)+theta)+tan((pi)/(2)+theta)sin theta+csc((pi)/(2)+theta)=0

OBJECTIVE RD SHARMA-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If sin(pi cos theta) = cos(pi sin theta), then of the value cos(th...

    Text Solution

    |

  2. If "tan" (pi "cos" theta) = "cot"(pi "sin" theta), then the value(s) ...

    Text Solution

    |

  3. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  4. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  5. The number of roots of the equation x +2"tan"x = (pi)/(2) in the inter...

    Text Solution

    |

  6. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  7. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  8. The values of x between 0 and 2pi which satisfy the equation sinxsqrt(...

    Text Solution

    |

  9. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |

  10. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  11. The general solution of the equation sin^2thetasectheta+sqrt3 tantheta...

    Text Solution

    |

  12. If x = X "cos" theta-Y "sin" theta, y = X "sin" theta + Y "cos" theta ...

    Text Solution

    |

  13. The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = ...

    Text Solution

    |

  14. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  15. The smallest positive values of x and y which satisfy "tan" (x-y) =1, ...

    Text Solution

    |

  16. The solution set of the inequality "cos"^(2) theta lt (1)/(2), is

    Text Solution

    |

  17. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  18. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |

  19. Find the coodinates of the point of intersection of the curves y= cos ...

    Text Solution

    |

  20. If 1/6 sinx, cosx, tan x are in G.P. then x=,

    Text Solution

    |