Home
Class 12
MATHS
If the equation cos (lambda "sin" theta)...

If the equation cos `(lambda "sin" theta) = "sin" (lambda "cos" theta)` has a solution in `[0, 2pi]`, then the smallest value of `lambda`, is

A

`(pi)/(sqrt(2))`

B

`sqrt(2)pi`

C

`(pi)/(2)`

D

`(pi)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\lambda \sin \theta) = \sin(\lambda \cos \theta) \) and find the smallest value of \( \lambda \) such that there is a solution in the interval \( [0, 2\pi] \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \cos(\lambda \sin \theta) = \sin(\lambda \cos \theta) \] Using the identity \( \sin\left(\frac{\pi}{2} + x\right) = \cos(x) \), we can rewrite the sine term: \[ \cos(\lambda \sin \theta) = \cos\left(\frac{\pi}{2} - \lambda \cos \theta\right) \] ### Step 2: Set the Angles Equal Since the cosines are equal, we can set the angles equal to each other (considering the periodic nature of cosine): \[ \lambda \sin \theta = \frac{\pi}{2} - \lambda \cos \theta + 2k\pi \quad \text{for some integer } k \] or \[ \lambda \sin \theta = -\left(\frac{\pi}{2} - \lambda \cos \theta\right) + 2k\pi \] ### Step 3: Rearranging the First Equation From the first equation, we can rearrange it to isolate \( \lambda \): \[ \lambda \sin \theta + \lambda \cos \theta = \frac{\pi}{2} + 2k\pi \] Factoring out \( \lambda \): \[ \lambda (\sin \theta + \cos \theta) = \frac{\pi}{2} + 2k\pi \] Thus, we can express \( \lambda \) as: \[ \lambda = \frac{\frac{\pi}{2} + 2k\pi}{\sin \theta + \cos \theta} \] ### Step 4: Finding the Minimum Value of \( \lambda \) To find the minimum value of \( \lambda \), we need to maximize the denominator \( \sin \theta + \cos \theta \). The maximum value of \( \sin \theta + \cos \theta \) occurs when \( \theta = \frac{\pi}{4} \): \[ \sin \theta + \cos \theta = \sqrt{2} \] Thus, substituting this back into our expression for \( \lambda \): \[ \lambda_{\text{min}} = \frac{\frac{\pi}{2}}{\sqrt{2}} = \frac{\pi}{2\sqrt{2}} \] ### Step 5: Simplifying the Expression We can further simplify \( \lambda_{\text{min}} \): \[ \lambda_{\text{min}} = \frac{\pi \sqrt{2}}{4} \] ### Conclusion The smallest value of \( \lambda \) such that the equation has a solution in the interval \( [0, 2\pi] \) is: \[ \lambda = \frac{\pi \sqrt{2}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If "sin" x = lambda has exactly one solution in [0, 9 pi//4] then the number of values of lambda , is

The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)/(2) is

If 1+sin^(2)theta=3sin theta cos theta then the solution set in(0,(pi)/(2)) is

If the equation cos^(4)theta+sin^(4) theta+lambda=0 has real solutions for theta , then lambda lies in the interval :

The equation "sin"^(6) x + "cos"^(6) x = lambda , has a solution if

If equation sin^(-1) (4 sin^(20 theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

If the equation 2 cos x + cos 2 lambda x=3 has only one solution , then lambda is

OBJECTIVE RD SHARMA-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  2. If theta in [0,5pi]a n dr in R such that 2sintheta=r^4-2r^2+3 then th...

    Text Solution

    |

  3. If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta e...

    Text Solution

    |

  4. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  5. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  6. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  7. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  8. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  9. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  10. The number of solutions of the equation "tan" x + "sec"x = 2"cos" x ly...

    Text Solution

    |

  11. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  12. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  13. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  14. The values of alpha for which the equation "sin"^(4) x+ "cos"^(4)x + "...

    Text Solution

    |

  15. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  16. The number of solutions of the equation 2^("cos"x) = |"sin" x|"in" [-2...

    Text Solution

    |

  17. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  18. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |

  19. If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the...

    Text Solution

    |

  20. If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) ...

    Text Solution

    |