Home
Class 11
MATHS
sin^(-1)(sin5)> x^2-4x hold if (a) ...

`sin^(-1)(sin5)> x^2-4x` hold if (a) `x=2-sqrt(9-2pi)` (b) `x=2+sqrt(9-2pi)` (c) `x >2+sqrt(9-2pi)` (d) `x in (2-sqrt(9-2pi),2+sqrt(9-2pi))`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sin5)gtx^2-4x holds if a) x=2-sqrt(9-2pi) b) x=2+sqrt(9-2pi) c) xgt2 +sqrt(9-2pi) d) "x"in(2-sqrt(9-2pi),2+sqrt(9-2pi))

sin^(-1)(sin5)>x^(2)-4x hold if (a)x=2-sqrt(9-2 pi)(b)x=2+sqrt(9-2 pi)(c)x>2+sqrt(9-2 pi)(d)x in(2-sqrt(9-2 pi),2+sqrt(9-2 pi))

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=cos2y , then (a) x=pi/8+sqrt(1/2-(pi^2)/(64)) (b) y= sqrt(1/2-(pi^2)/(64))-pi/(12) (c) x=pi/(12)+sqrt(1/2-(pi^2)/(64)) (d) y=sqrt(1/2-(pi^2)/(64))-pi/8

If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=cos2y , then (a) x=pi/8+sqrt(1/2-(pi^2)/(64)) (b) y= sqrt(1/2-(pi^2)/(64))-pi/(12) (c) x=pi/(12)+sqrt(1/2-(pi^2)/(64)) (d) y=sqrt(1/2-(pi^2)/(64))-pi/8

Solve : sqrt(9+2x)-sqrt(2x)=(5)/(sqrt(9+2x)) .

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3