Home
Class 12
MATHS
The number of triple satisfying sin^(-1)...

The number of triple satisfying `sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=(pi)/2 is

The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -x|) = (pi)/(2) is

The number of solution of (x,y) so that sin^(-1)x+sin^(-1)y=(2pi)/3,cos^(-1)x-cos^(-1)y=-(pi)/3 is

Point P(x,y) satisfying the equation sin^(-1)x+cos^(-1)y+cos^(-1)(2xy)=(pi)/2 lies on

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

Point P(x, y) satisfying the equation Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2 lies on

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2