Home
Class 7
MATHS
The following steps are involved in find...

The following steps are involved in finding the value of `a^(4) + (1)/(a^(4))` when `a + (1)/(a) = 1` . Arrange them in sequential order from the first to the last .
(A) `a^(2) + (1)/(a^(2)) + 2 = 1 implies a^(2) + (1)/(a^(2)) = -1`
(B) `(a^(2))^(2) + ((1)/(a^(2))^(2))^(2) = 1^(2)`
(C) `(a + (1)/(a))^(2) = 1^(2)`
(D) `(a^(2) + (1)/(a^(2)))^(2) = (-1)^(2)`
E `a^(4) + (1)/(a^(4)) = -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The following steps are involved in finding the value of 10 (1)/(3) xx 9(2)/(3) by using an appropriate indentity . Arrange them in sequential order . (A) (10)^(2) - ((1)/(3))^(2) = 100 - (1)/(9) (B) 10(1)/(3) xx 9(2)/(3) = (10 + (1)/(3)) (10 - (1)/(3)) (C) (10 + (1)/(3)) (10 - (1)/(3)) = (10)^(2) - ((1)/(3))^(2) [because (a + b) (a -b) = (a^(2) - b^(2))] (D) 100 - (1)/(9) = 99 + 1 - (1)/(9) = 99(8)/(9)

Find the value of (2^(1//4)- 1) (2^(3//4) + 2^(1//2) +2^(1//4) + 1)

Find the value of 2a^(4)xx(-(1)/(8)ab^(2))xx(16ab^(2)c) when a=-1;b=1;c=-1

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

Find the value of ((1)/(4^(-3))-(2)/(10^(-2)))/((1)/(2^(-2))+(1)/(4^(-1)))

Find the value of   4 ÷ 1/2 - 1/2 ÷ 2 + 1/2 ( 2 + 1/2 )

a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2) then find the value of k