Home
Class 12
MATHS
Find A^2-5A+6I, if A=[[2, 0, 1],[ 2, 1, ...

Find `A^2-5A+6I`, if `A=[[2, 0, 1],[ 2, 1, 3],[ 1,-1, 0]]`

Text Solution

AI Generated Solution

To find \( A^2 - 5A + 6I \) for the matrix \( A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x)=x^2-5x+6 . Find f(A), if A=[[2,0,1],[2,1,3],[1,-1,0]]

Find ,A^2-5A+6l, if A = [(2,0,1),(2,1,3),(1,-1,0)] .

Show that(i) [[5,-1],[ 6 ,7]][[2, 1],[ 3 ,4]]!=[[2, 1],[ 3, 4]][[5,-1],[ 6, 7]] (ii) [[1, 2, 3],[ 0, 1, 0],[ 1, 1, 0]][[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]]!=[[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]][[1 ,2 ,3],[ 0, 1, 0],[ 1, 1, 0]]

If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)] .

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find (A^(2)-5A)

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2, 1]] , then

Find x and y, if 2[[1, 3],[ 0,x]]+[[y,0], [1, 2]]=[[5, 6],[ 1, 8]]

5.Find the rank of the matrix [[2,2,-1],[4,1,2],[3,-1,0],[1,-2,-1]]

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]