Home
Class 14
MATHS
" (1) "(cos^(2)theta+sec^(2)theta)/(cose...

" (1) "(cos^(2)theta+sec^(2)theta)/(cosec^(2)theta-sec^(2)theta)=(1+tan^(2)theta)/(1-tan^(2)theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cosec^(2)theta+sec^(2)theta)/(cosec^(2)theta-sec^(2)theta)=(1+tan^(2)theta)/(1-tan^(2)theta)

(tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

Prove the Identity (tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

Prove that: 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(2)theta)

sqrt((1-cos^(2)theta)sec^(2)theta)=tan theta

Prove that 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(4)theta)

(1-cos^2theta)sec^2 theta= tan^2 theta

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

The value of cosec ^(2) theta cot ^(2) theta - sec ^(2) theta tan ^(2) theta -(cot ^(2) theta- tan ^(2) theta) (sec ^(2) theta cosec ^(2) theta -1) is-

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=