Home
Class 12
MATHS
I=int(x^(2))/(x^(4)+x^(2)+1)dx...

I=int(x^(2))/(x^(4)+x^(2)+1)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(x)/(x^(4)-x^(2)+1)dx

I=int((2x^(2)+1))/((x^(2)-4)(x^(2)-1))dx

(i) int((x^(2) - 1)/(x^(2) + 1))dx , (ii) int ((x^(6)- 1)/(x^(2) + 1))dx (iii) int ((x^(4))/(1+x^(2)))dx , (iv) int((x^(2))/(1+x^(2)))dx

Evaluate: (i) int((x^(3) + 4x^(2) -3x -2))/((x+2)) dx , (ii) int((x^(4) +1)/(x^(2) +1))dx

Evaluate : (i) int(dx)/((9x^(2)-1)) (ii) int(x)/((x^(4)-9))dx (iii) int(x^(2))/((x^(2)-9))dx

I=int(1-x^(2))/(x(1-2x))dx

I=int(sqrt(x^2+1))/(x^(4))dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then

I=int(2x^(3)+4x+1)/(x)dx