Home
Class 12
MATHS
e^(-1/ x)[1+e^(1/ x)]^(- 1) is...

`e^(-1/ x)[1+e^(1/ x)]^(- 1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

underset(x to oo)"Lt" (e^(1//x)-e^(-1//x))/(e^(1//x)+e^(-1//x))=

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(-1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

underset(x to 0)lim ((e^(1//x) -1)/(e^(1//x) + 1)) =