Home
Class 12
MATHS
If A=[[3,-2],[ 4,-2]]and I=[[1, 0],[ 0,...

If `A=[[3,-2],[ 4,-2]]`and `I=[[1, 0],[ 0, 1]]`, find k so that `A^2=k A-2I`.

Text Solution

AI Generated Solution

To solve the equation \( A^2 = kA - 2I \) for the given matrices \( A \) and \( I \), we will follow these steps: ### Step 1: Calculate \( A^2 \) Given: \[ A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \] We need to compute \( A^2 = A \cdot A \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If A=[[1,3] , [3,4]] and A^2-kA-5I_2=0 then k=

If A=[[2,4-1,k]] and A^(2)=0, then find the value of k.

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=