Home
Class 11
MATHS
If the line y=mx+c touches the parabola ...

If the line y=mx+c touches the parabola `y^(2)=4a(x+a)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of c for which the line y=mx+ c touches the parabola y^(2)=8(x+2)

Statement 1: The line y=x+2a touches the parabola y^(2)=4a(x+a) statement 2: The line y=mx+am+(a)/(m) touches y^(2)=4a(x+a) for all real values of m.

If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one value of m(m gt0) , then the value of (c+m)/(c-m) is equal to

If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one value of m(m gt0) , then the value of (c+m)/(c-m) is equal to

If the line 2x+3y=1 touches the parabola y^(2)=4ax then the length of latus rectum is

Show that the line y = mx + c touches the parabola y^(2) = 4ax if c = (a)/(m) .

If the line x-3y+k=0 touches the parabola 3y^(2)=4x then the value of k is

If the line y=mx+c is a normal to the parabola y^2=4ax , then c is

If the line y=mx+c is a normal to the parabola y^2=4ax , then c is