Home
Class 12
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0, find ("dy")...

If `xsqrt(1+y)+ysqrt(1+x)=0,` find `("dy")/("dx")` . To prove `(dy)/(dx)= -1/(1+x)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))

If xsqrt(1+y)+ysqrt(1+x)=0," for ", -1 lt x lt 1 , prove that (dy)/(dx)= -(1)/((1+x)^(2)) .