Home
Class 12
MATHS
The roots of (x-41)^(49)+(x-49)^(41)+(x-...

The roots of `(x-41)^(49)+(x-49)^(41)+(x-2009)^(2009)=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the QE (3x + 4)^(2) - 49 = 0 are

The factor of (x^(2010)+y^(2010))^(2010!)-(x^(2009!))^(2010^(2))-(y^(2009!))^(2010^(2)) is: a.x^(2009)b.y^(2009)c.(xy)^(2009!)d.(xy)^(2010)

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

if x+(1)/(x)=1 then x^(2009)+(1)/(x^(2009))

x^(2009) xx(1)/(x^(2008))=x

Number of roots which are common to the equations x^(3)+2x^(2)+2x+1=0 and x^(2008)+x^(2009)+1=0, are (A)0(B)1(C)2 (D) 3

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to