Home
Class 12
MATHS
If A=[[1, 0 ,2 ],[0 ,2 ,1],[2, 0 ,3]], p...

If `A=[[1, 0 ,2 ],[0 ,2 ,1],[2, 0 ,3]]`, prove that `A^3-6A^2+7A+2I=0`

Text Solution

AI Generated Solution

To prove that \( A^3 - 6A^2 + 7A + 2I = 0 \) for the matrix \( A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

A = [[1,0,20,2,12,0,3]] and A ^ (2) -6A ^ (2) + 7A + kI_ (3) = 0

If A = [[1,-1,2],[3,0,-2],[1,0,3]] prove A.adjA=|A|I Also,find A^ (− 1)

If A[(1,0,2),(0,2,1),(2,0,3)] and A^(3)-6A^(2)+7A+kI_(3)=O find k.

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] and A^(3)-6A^(2)+7A+kI_(3)=O , find k.

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I