Home
Class 10
MATHS
Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= ...

Solve for x: `a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

Solve : (a)/(ax-1)+(b)/(bx-1)=a+b , where a+b ne 0, ab ne 0 .

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

Solve for 'x' : (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x) " " a != 0, b!=0, x !=0

"Solve for x and y; ax+by=a-b, "bx-ay=a+b

Solve: 1/x-1/(x+b)=1/a-1/(a+b) (x!=0,-b) .

Solve : 1/x - 1/(x+b)= 1/a -1/(a+b)[ x ne 0, -b]

Solve the equations : (1)/(a+b-x)=(1)/(a)+(1)/(b)-(1)/(x)