Home
Class 11
MATHS
" Let "S(k)=lim(n rarr oo)sum(i=0)^(n)(1...

" Let "S_(k)=lim_(n rarr oo)sum_(i=0)^(n)(1)/((k+1)^(i))," then "sum_(k=1)^(n)kS_(k)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(k)=lim_(n rarr oo)sum_(i=0)^(n)(1)/((1+k)^(i)). Then sum_(k=1)^(n)kS_(k) equals:

Let S_(k)=lim_(n to oo) sum_(i=0)^(n) (1)/((k+1)^(i))." Then " sum_(k=1)^(n) kS_(k) equals

lim_ (n rarr oo) sum_ (k = 0) ^ (n) ((1) / (nC_ (k)))

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

Let S_k=underset(nrarrinfty)limsum_(i=0)^n1/(k+1)^i. Then sum_(k=1)^nkS_k equals

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))

lim_ (n rarr oo) sum_ (K = 1) ^ (n) (K) / (n ^ (2) + K ^ (2))