Home
Class 12
MATHS
2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2)))...

2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

If 2tan^(-1)x=-cos((1-x^(2))/(1+x^(2))) then x lies in the interval

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

show that 2 tan ^(-1) ((1+x)/(1-x)) - cos ^(-1)( (1-x^(2))/(1+x^(2)))=(pi)/(2)

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))