Home
Class 11
MATHS
The function f(x) = x^2+a/xcannot have a...

The function `f(x) = x^2+a/x`cannot have a maximum at `x = -3` for any real value of a.(True/false)

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^(2), x in R has no minimum value. (True/False)

For what real values of k, 3x^2+kx+39-k^2 cannot be negative for any real values of x?

For any real value of x the maximum value of 8x - 3x^2 is

Show that the equation 3x^(2)+7x+8=0 is not true for any real value of x.

If f(x)=(x^2-1)/(x^2+1) , for every real x , then the maximum value of f

True or False : The function f(x) = |x-1| is a continuous function.

If f (X = X^2 - 3x + 2 be a real valued function of the real variable, find fof.

Find the maximum and minimum value of f if any of the function f(x)=|x-1|, x in R .

Find the maximum and minimum value of f if any of the function f(x)=|x-1|, x in R .

Find the maximum and minimum values of f , if any, of the function given by f(x) = |x|, x in R