Home
Class 12
MATHS
" If "f(x)=(10^(x)-10^(-x))/(10^(x)+10^(...

" If "f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))+2;" then "f^(-1)(y)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(10^(x)-10^(-x))/(10^(x) +10^(-x)) then f^(-1)(x) =

If f:R rarr(-1,1) defined by f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible,find f^(-1)

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))=

f: R rarr (-1, 1) , f(x) = (10^(x)-10^(x))/(10^(x)+10^(-x)). If inverse of f^(-1) exists then find it .

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

The inverse of f(x)=(10^x-10^(-x))/(10^x+10^(-x))=

The inverse of the function f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is -

Show that f: R rarr (-1,1) is defined by f(x) = (10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible also find f^(-1) .