Home
Class 12
MATHS
Solve the equation for x, y, z and t, if...

Solve the equation for x, y, z and t, if `2[[x ,z ],[y ,t]]+3[[1,-1 ],[0 ,2]]=3[[3 ,5 ],[4 ,6]]`

Text Solution

AI Generated Solution

To solve the equation \( 2\begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \), we will follow these steps: ### Step 1: Multiply the matrices by their respective scalars First, we will multiply the matrix \( \begin{bmatrix} x & z \\ y & t \end{bmatrix} \) by 2 and the matrix \( \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \) by 3. \[ 2\begin{bmatrix} x & z \\ y & t \end{bmatrix} = \begin{bmatrix} 2x & 2z \\ 2y & 2t \end{bmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find x , y , z , t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .

Using matrices, solve the following system of equations for x,y and z. 2x+3y+3z=5 , x-2y+z=-4 , 3x-y-2z=3

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Using matrices, solve the following system of equations for x,y and z. 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 .

The solution of the linear system of equation [[2,2,3],[7,1,1],[0,6,5]][[x],[y],[z]]=[[3y+11],[6z-1],[5y+11]]+[[x],[x],[4z]]+[[z],[3x],[4y]] has

" The solutions of the linear system of equations "[[2,2,3],[7,1,1],[0,6,5]][[x],[y],[z]]=[[3y+11],[6z-1],[5y+11]]+[[x],[x],[4z]]+[[z],[3x],[4y]],is

Solve the following set of equations 2x+3y -z = 9; x +y +z = 9; 3x - y - z = -1 .