Home
Class 10
MATHS
" Solve "(1)/(4)x^(log(2)sqrt(x))=(2^(1/...

" Solve "(1)/(4)x^(log_(2)sqrt(x))=(2^(1/4))2^((log_(2)x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (1)/(4)x^(los2sqrt(x))=(2.x^((log)_(2)x))^((1)/(4))

Solve: 1/4x^(log_2sqrt(x))=(2. x^((log)_2x))^(1/4)

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

Solve: 1/4x^(los_2sqrt(x))=(2. x^((log)_2x)1/4)dot

Solve log_(4)(x-1)=log_(2)(x-3)

Find the number of integers satisfying the inequality 1sqrt(log_((1)/(2))^(2)x+4log_(2)sqrt(x))

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot