Home
Class 11
MATHS
" 23."(i)|[a^(2)+2a,2a+1,1],[2a+1,a+2,1]...

" 23."(i)|[a^(2)+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the indicated products (i) [(a,b),(-b,a)][(a,-b),(b,a)] (ii) [(1),(2),(3)]["2 3 4"] (iii) [(1,-2),(2,3)][(1,2,3),(2,3,1)] (iv) [(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)] .

If A=[(1,0,2),(0,1,2),(1,2,0)],B=[(1,-2,3),(2,3,-1),(-3,1,2)] then

Locate the points: (1,1),(1,2),(1,3),(1,4) (2, 1),(2,2),(2,3),(2,4)(1,3),(2,3),(3,3),(4,3)(1,4),(2,4),(3,4),(4,4)

Express the following matrices as the sum of a symmetric and a skew symmetric matrix : (i) [{:(3,5),(1,-1):}] (ii) [{:(6,-2,2),(-2,3,-1),(2,-1,3):}] (iii) [{:(3,3,-1),(-2,-2,1),(-4,-5,2):}] (iv) [{:(1,5),(-1,2):}]

Let f = ((1,3), (2,1),(3,2)) and g = ((1,2), (2,3),(3,1)) , then find (gof) (1) and (fog) (2).

The relation R on set A={1,2,3} is defined as R {(1,1),(2,2),(3,3),(1,2),(2,3)} is not transitivie. Why?

A=[[1,2,3],[3,-2,1],[4,2,1]] Show that A^3-23A-40I=0