Home
Class 12
MATHS
Find all ordered pairs (x,y) of real num...

Find all ordered pairs (x,y) of real numbers such that `x^2+4y^2-xy=10, 2x-4y+3xy=11`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find all ordered pairs of real numbers that satisfy both the equations x^(2)+y^(2)=2xy and x^(2)+y^(2)=6x+6y+2

Number of pairs (x,y) real number that satisfy 2x^(2)+y^(2)+2xy-2y+2=0, is

The number of distinct pairs (x,y) of the real number satisfying x=x^(3)+y^(4)and y=2xy is :

The number of distinct pairs (x,y) of the real number satisfying x=x^(3)+y^(4)and y=2xy is :

The number of distinct pairs (x,y) of the real number satisfying x=x^(3)+y^(4) and y=2xy is

If x and y be two positive real numbers such that 4x^(2)+y^(2)=40 and xy=6 , then find the value od 2x+y .

How many integer pairs (x,y) satisfy x^(2) + 4y^(2) -2xy -2x - 4y -8=0 ?

If (3x-4y) prop sqrt(xy) then show that (x^2+y^2) prop xy .