Home
Class 12
MATHS
tan^(-1)(cot x)+cot^(-1)(tan x)=...

tan^(-1)(cot x)+cot^(-1)(tan x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(cot4x)

tan^(-1)(cot x)-tan^(-1)(cot2x)=

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

cot(tan^(-1)x+cot^(-1)x)

differentiate (tan x)^(cot x)+(cot x)^(tan x)

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)