Home
Class 12
MATHS
If f(x)=(9x)/(x+2) for x<1, f(1)=1, f(x...

If `f(x)=(9x)/(x+2) for x<1, f(1)=1, f(x)=(x+3)x^-1` for `x>1`, then in the interval `(-3, 3)` function is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the intervals in which f(x) = 2x^(3) - 9x^(2) - 12 x -3 is increasing and the intervals in which f(x) is decreasing.

If f(x)=x^3+3x^2-9x+4 is a real function Find the intervals in which the fuction is increasing or decreasing.

Using Lagrange's theorem , find the value of c for the following functions : (i) x^(3) - 3x^(2) + 2x in the interval [0,1/2]. (ii) f(x) = 2x^(2) - 10x + 1 in the interval [2,7]. (iii) f(x) = (x-4) (x-6) in the interval [4,10]. (iv) f(x) = sqrt(x-1) in the interval [1,3]. (v) f(x) = 2x^(2) + 3x + 4 in the interval [1,2].

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

Show that the function f(x)=x^(3)+1/(x^(3)) is decreasing function in the interval [-1,1]-{0} .

Find the absolute maximum of the function f(x)=x^3+3x^2-9x+7 in the interval [-4,2] .

Verify Rolle's theorem for the function f(x) = x^(3) - 9x^(2) + 26x -24 in the interval [2.4]

Verify Rolle's theorem for the function f(x) = x^(3) - 9x^(2) + 26x -24 in the interval [2.4]

The function f(x)=2x^3+9x^2+12x+20 is increasing in the interval