Home
Class 11
MATHS
Let f(x) be a differentiable function an...

Let `f(x)` be a differentiable function and `f(x) > 0` for all x. Prove that the curves `y = f(x) and y = sin kx · f(x)` touch each other at the points of intersection of the two curves.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function and f(x)>0 for all x. Prove that the curves y=f(x) and y=sin kxf(x) touch each other at the points of intersection of the two curves.

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let f(x) be continuous and differentiable function for all reals and f(x + y) = f(x) - 3xy + f(y). If lim_(h to 0)(f(h))/(h) = 7 , then the value of f'(x) is

Let f(x) be a differentiable function which satisfies the equation f(xy)=f(x)+f(y) for all x>0,y>0 then f'(x) equals to

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then