Home
Class 10
MATHS
The sum of series logcos(x/2)+log((cos)x...

The sum of series `logcos(x/2)+log((cos)x/(2^2))+log((cos)x/(2^3))+..........+log((cos)x/(2^n))+log((sin)x/(2^n))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int sin2x*log cos xdx is equal to

solve for x:log_(sin^(2)x)(2)+log_(cos^(2)x)(2)+2log_(sin^(2)x)(2)log_(cos^(2)x)(2)=0

log_(cos x)sin x+log_(sin x)cos x=2then x=

int(cos^(2) (log .x))/(x)dx

int(cos^(2) (log .x))/(x)dx

lim_(x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to

Prove that : (vi) log_(a)x + log_(a^2)x^(2) + log_(a^3)x^(3) + ………….+ log_(a^n)x^(n) = log_(a)x^(n)

Sum of the series 1+x log|(1-sin x)/(cos x))^((1)/(2))+x^(2)log|(1-sin x)/(cos x)|^((1)/(4))+......oo

lim_(x rarr oo)(1+((log cos x)/(log cos((x)/(2))))^(2))^(2)