Home
Class 12
MATHS
Given Pn and Qn, are the square matrices...

Given `P_n and Q_n`, are the square matrices of order 3 such that, `P_n=[a_(ij)],Q_n=[b_(ij)]` where `a_(ij)=(3i+j)/(4^2n),b_(ij)=(3i-j)/2^(2n)` for all `'i' and 'j' 1 leq i.j leq 3` .If `L_1=lim_(x->oo) T_r(4P_i+4^2P_2+4^3P_3+...........+4^nP_n) and L_2=lim_9n->oo) T_r (2Q_1+2^2Q_2+2^3Q_3+..........+2^nQ_n`, then the value of `(L_1 + L_2)` is ( where `T_r (A)` denotes the trace of matrix A.)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A_(n) and B_(n) be square matrices of order 3, which are defined as : A_(n)=[a_(ij)] and B_(n)=[b_(ij)] where a_(ij)=(2i+j)/(3^(2n)) and b_(ij)=(3i-j)/(2^(2n)) for all i and j, 1 le i, j le 3 . If l=lim_(n to oo) Tr. (3A_(1)+3^(2)A_(2)+3^(3)A_(3)+........+3^(n)A_(n)) and m=lim_(n to oo) Tr. (2B_(1)+2^(2)B_(2)+2^(3)B_(3)+.....+2^(n)B_(n)) , then find the value of ((l+m))/(3) [Note : Tr (P) denotes the trace of matrix P.]

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=2i-j .

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A

Construct an mxxn matrix A = [ a_(ij) ], where a_(ij) is given by a_(ij)=|(3i-4j)|/(4) with m = 3, n = 4