Home
Class 12
MATHS
lim(x->0)(1-cosxsqrt(cos2x))/(x^2)...

`lim_(x->0)(1-cosxsqrt(cos2x))/(x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to 0)(1-cosxsqrt(cos^2x))/x^2

Evaluate lim_(xrarr0)((1-cosxsqrt(cos2x)))/(x^(2)).

int(dx)/(cosxsqrt(cos2x))

lim_(xrarr0)(2-cosxsqrt(cos2x))^((x^(2)+2)/(x))=e^(alpha) , then alpha =

lim_(x rarr0)(1-cos x sqrt(cos2x))/((e^(x)^^2-1))

Prove : underset(xrarr0)"lim"(1-cosxsqrt(cos2x))/(x^(2))=(3)/(2)

lim_(x rarr0)(sqrt(1-cos2x))/(x)

intdx/(cosxsqrt(cos2x))

lim_(x->0)(1-cos2x+tan^2x)/(xsinx)