Home
Class 12
MATHS
lim(x->oo) x^5[1/x^3] is equal to; where...

`lim_(x->oo) x^5[1/x^3]` is equal to; where [.] denotes the greatest function.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

int_(-10)^(0)(1(2[x])/(3x-[x])/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)

int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)