Home
Class 12
MATHS
sec^(- 1)[(a^(1/3) + b ^(1/3))/(a^(1/3) ...

`sec^(- 1)[(a^(1/3) + b ^(1/3))/(a^(1/3) - b ^(1/3)]]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a^((1)/(3)) b^((1)/(3)) + a^(-(1)/(3)) + a^(-(1)/(3)) b^((1)/(3)) then prove that a(bx^(3) - 3bx - a) = b^(2)

If x = a^(1/3) b^(-1/3) + a^(-1/3) b^(1/3) then prove that a(bx^(3) - 3bx -a) = b^(2)

(4)/(9^(1/3)-3^(1/3)+1) is equal to 3^(1/3)+1b3^(1/3)-1c*3^(1/3)+2d*3^(1/3)-2

The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is

1-:1/3= (a) 1/3 (b) 3 (c) 1 1/3 (d) 3 1/3

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0