Home
Class 12
MATHS
int(1)^(4)x sin^(1)x+tan^(1)x=(pi)/(2)...

int_(1)^(4)x sin^(1)x+tan^(1)x=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x .tan^(-1)(sin x)dx=

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

If sin^(-1)x+tan^(-1)((1)/(2))=(pi)/(2) then x=

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is

If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin14)=(pi)/(2) , then the value of sin^(-1)(sin2x) can be equal to

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Evaluate the definite integrals int_(0)^((pi)/(2))sin2x tan^(-1)(sin x)dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1