Home
Class 12
MATHS
Find the value of the limit lim(x->0) (a...

Find the value of the limit `lim_(x->0) (a^sqrtx-a^(1/sqrtx))/(a^sqrtx+a^(1/sqrtx)), a>1`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrtx + 1/sqrtx

f(x)=sqrtx-(1)/(sqrtx)

Evaluate the limits : lim_(x to 1) (sqrtx-x^2)/(1-sqrtx)

y= log(sqrtx+1/sqrtx)

lim_(xto1)(sqrtx-x^(2))/(1-sqrtx)

y = sqrtx + 1/sqrtx

Find the following limits: lim_(xrarr0+)(sqrt(1-x)-sqrt(1+x))/(sqrtx)

1/sqrtx (sqrtx+1/sqrtx)^2

y = x+sqrtx+1/sqrtx

lim_(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-1 sqrtx)^2(e^(5sqrtx)-1)x)=