Home
Class 12
MATHS
lim(n rarr oo)((1^(2)+2^(2)+3^(2)+.........

lim_(n rarr oo)((1^(2)+2^(2)+3^(2)+......+n^(2))(1^(3)+2^(3)+3^(3)+......+n^(3)))/((1^(6)+2^(6)+3^(6)+....+n^(6)))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)((1^(2)+2^(2)+3^(3)+...+n^(2))(1^(3)+2^(3)+3^(3)+...+n^(3)))/(1^(6)+2^(6)+3^(6)+...+n^(6))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+......+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+...+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)