Home
Class 12
PHYSICS
Consider a neutrom and an electron bound...

Consider a neutrom and an electron bound to each other due to gravitational force. Assuming Bohr's quantization rule angular momentum to be valid in this case, derive an expression for the energy of the neutron-electron system.

Text Solution

Verified by Experts

To move in circle, necessary centripetal force is provided by gravitational force.
`(m_(e)v^(2))/(r )=G(m_(e)m_(n))/(r^(2)) " " (i)`
`v=sqrt((Gm_(n))/(r ))`
Bohr's quantisation rule
`m_(e)vr=(nh)/(2pi) " " (ii)`
`m_(e)sqrt((Gm_(n))/(r ))r^(2)=(n^(2)h^(2))/(4pi^(2))`
Squaring both sides, we get
`m_(e)^(2)(Gm_(n))/(r ) r^(2)=(n^(2)h^(2))/(4pi^(2))`
`r=r_(n)=(n^(2)h^(2))/(4pi^(2)Gm_(e)^(2)m_(n))`
`K.E.: K=(1)/(2) m_(e)v^(2)=(Gm_(e)m_(n))/(2r)`
`P.E.: U=-(Gm_(e)m_(n))/(r )`
`T.E.: E=K+U=-(Gm_(e)m_(n))/(2r)`
`E_(n)=-(Gm_(e)m_(n))/(2xx(n^(2)h^(2))/(4pi^(2)Gm_(e)^(2)m_(n)))`
`=-(2pi^(2)Gm_(e)^(3)m_(n)^(2))/(n^(2)h^(2))`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

A uniform magnetic field B exists in a region. An electrons projected perpendicular to the field goes in a circle. Assuming Bohr's quantization rule for angular momentum, calculate (a) the smallest possible radius of the electrons (b) the radius of the nth orbit and (c) the minimum possible speed of the electron.

A uniform magnetic filed B exists in a region. An electron is given velocity perpendicular to the magnetic field. Assuming Bohr's quantization rule for angular momentum. Calculate the minimum possible speed of the electron.

A uniform magnetic filed B exists in a region. An electron is given velocity perpendicular to the magnetic field. Assuming Bohr's quantization rule for angular momentum. Calculate the radius of the nth orbit

If we assume only gravitational attraction between protect and electron in hydrogen atom and the Bohr's quantization rule kto be allowed , then the expression for the ground state energy of the atom will be (the mass of proton is M and that of electron is m )

Derive Bohr's quantisation condition for angular momentum of orbiting electron in hydrogen atom using De Broglie's hypothesis.

The earth revolves round the sun due to gravitatinal attraction. Suppose that the sun and the earth are point particle with their existing masses and that Bhor's quantization rule for angular monentum is valid in the case of gravitation (a) Calculate the minimum radius the earth can have for its orbit. (b) What is the value of the principle quantum number n for the present radius ? Mass of the earth = 6.0 xx 10^(24) kg, mass of the sun = 2.0 xx 10^(30) kg, earth-sun distance = 1.5 xx 10^(11)m .

if we assume only gravitational attraction between proton and electron in hydrogen atom and the Bohr quantizaton rule to be followed, then the expression for the ground state energy of the atom will be (the mass of proton is M and that of electron is m.)

What is the angular momentum of an electron in Bohr's hydrogen atom whose energy is -3.4e V ?

What is the angular momentum of an electron in Bohr's hydrogen atom whose energy is -0.544 eV ?

CP SINGH-BOHR THEORY-Exercises
  1. Consider a neutrom and an electron bound to each other due to gravitat...

    Text Solution

    |

  2. A beam of fast moving alpha particles were directed towards a thin fil...

    Text Solution

    |

  3. In a Rutherford scattering experiment when a projectile of change Z(1)...

    Text Solution

    |

  4. An alpha-particle of 5MeV energy strikes with a nucleus of uranium at ...

    Text Solution

    |

  5. An alpha nucleus of energy (1)/(2)m nu^(2) bombards a heavy nucleus o...

    Text Solution

    |

  6. In Rutherford scattering experiment, what will b ethe correct angle fo...

    Text Solution

    |

  7. Which of the following is correct regarding Bohr's theory for hydrogen...

    Text Solution

    |

  8. In the Bohr model of the atom (i) the radius of the n^(th) orbit is ...

    Text Solution

    |

  9. The minimum orbital angular momentum of the electron in a hydrogen ato...

    Text Solution

    |

  10. Which of the following parameters are the same for all hydrogen like a...

    Text Solution

    |

  11. As one considers orbits with higher value of n is a hydrogen atom, the...

    Text Solution

    |

  12. The enrgy of an atom (or ion) in the ground state is - 54.4 eV .If ma...

    Text Solution

    |

  13. The angular speed of the electron in the n^(th) Bohr orbit of the hydr...

    Text Solution

    |

  14. According to Bohr's theory, the ratio of the times taken by the electr...

    Text Solution

    |

  15. The ratio of the binding energies of the hydrogen atom in the first an...

    Text Solution

    |

  16. The radius of the shortest orbit in a one electron system is 18 pm it...

    Text Solution

    |

  17. Which of the following curve may represent the speed of the electron i...

    Text Solution

    |

  18. In hydrogen atom, if the difference in the energy of the electron in n...

    Text Solution

    |

  19. An orbit electron in the ground state of hydrogen has an angular momen...

    Text Solution

    |

  20. In Bohr's model of hydrogen atom, let PE represents potential energy a...

    Text Solution

    |

  21. The ratio of the speed of the electrons in the ground state of hydroge...

    Text Solution

    |