Home
Class 10
MATHS
" 5."(x^(2)-3x+3)^(2)-(x-1)(x-2)=7...

" 5."(x^(2)-3x+3)^(2)-(x-1)(x-2)=7

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Simplify: x^(2)-3x+5-(1)/(2)(3x^(2)-5x+7)

sqrt(3x^(2)-7x-30)-sqrt(2x^(2)-7x-5)=x-5

Let f(x)=cot^(-1)((x^(2)-x+1)/(2x-3x^(2))+(x^(2)-x+1)/(3-2x)) and if f((3)/(2))+f((5)/(7))+f((2)/(3))+f((7)/(5))=k pi then k is

int (6x^(3) + 5x^(2)-7)/(3x^(2)-2x-7)dx

Find which of the following equations are quadratic : (i) (3x-1)^(2)=5(x+8) (ii) 5x^(2)-8x=-3(7-2x) (iii) (x-4)(3x+1)=(3x-1)(x+2) (iv) x^(2)+5x-5=(x-3)^(2) (v) 7x^(3)-2x^(2)+10=(2x-5)^(2) (vi) (x-1)^(2)+(x+2)^(2)+3(x+1)=0

Simplyfy: (3x^(2) + 5x - 7)(x -1)- (x^(2) - 2x +3)(x + 4)

Resolve (2x^(3)+3x^(2)+5x+7)/((x+1)^(5)) into partial fractions.

Resolve (2x^(3)+3x^(2)+5x+7)/((x+1)^(5)) into partial fractions.