Home
Class 12
MATHS
Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+...

Prove that `| ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2abc(a+b+c)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}|=2abc(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that abs[[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]] =2abc(a+b+c)^3

Using the properties of determinants, prove the following |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}|=2abc(a+b+c)^3

Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^2, (c+a)^2, b^2],[c^2,c^2,(a+b)^2]]|= 2abc (a+b+c)^3 .

Prove that ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)