To find the value of \( \cos \theta \) given that \( \sin \theta = \frac{1}{3} \), we can use the Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
### Step 1: Calculate \( \sin^2 \theta \)
Given \( \sin \theta = \frac{1}{3} \), we first calculate \( \sin^2 \theta \):
\[
\sin^2 \theta = \left( \frac{1}{3} \right)^2 = \frac{1}{9}
\]
### Step 2: Substitute into the Pythagorean identity
Now, substitute \( \sin^2 \theta \) into the Pythagorean identity:
\[
\frac{1}{9} + \cos^2 \theta = 1
\]
### Step 3: Solve for \( \cos^2 \theta \)
To isolate \( \cos^2 \theta \), subtract \( \frac{1}{9} \) from both sides:
\[
\cos^2 \theta = 1 - \frac{1}{9}
\]
To perform the subtraction, convert 1 into a fraction with a denominator of 9:
\[
1 = \frac{9}{9}
\]
Now, perform the subtraction:
\[
\cos^2 \theta = \frac{9}{9} - \frac{1}{9} = \frac{8}{9}
\]
### Step 4: Take the square root
Now, take the square root of both sides to find \( \cos \theta \):
\[
\cos \theta = \pm \sqrt{\frac{8}{9}} = \pm \frac{\sqrt{8}}{3}
\]
### Step 5: Simplify \( \sqrt{8} \)
We can simplify \( \sqrt{8} \):
\[
\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}
\]
Thus, we have:
\[
\cos \theta = \pm \frac{2\sqrt{2}}{3}
\]
### Final Answer
Therefore, the value of \( \cos \theta \) is:
\[
\cos \theta = \pm \frac{2\sqrt{2}}{3}
\]
To find the value of \( \cos \theta \) given that \( \sin \theta = \frac{1}{3} \), we can use the Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
### Step 1: Calculate \( \sin^2 \theta \)
...
If sin theta+cos theta=1, then sin theta cos theta is equal to :
Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .
If sin theta_(1)+sin theta_(2)+sin theta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3) is equal to 3(b)2(c)1(d)0
Prove that (sin theta + sin 3theta+ sin 5 theta + sin 7theta)/(cos theta + cos 3theta + cos 5 theta + cos 7theta) = (tan 3theta + tan theta)/(1 - tan 3theta tan theta) .
RESONANCE-DAILY PRACTICE PROBLEMS-dpp 92 illustration