Home
Class 11
PHYSICS
If sin theta=(1)/(3), hten cos theta wil...

If `sin theta=(1)/(3)`, hten `cos theta` will be-

A

`+(8)/(9)`

B

`+-(4)/(3)`

C

`+(2sqrt2)/(3)`

D

`+-(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \theta \) given that \( \sin \theta = \frac{1}{3} \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] ### Step 1: Calculate \( \sin^2 \theta \) Given \( \sin \theta = \frac{1}{3} \), we first calculate \( \sin^2 \theta \): \[ \sin^2 \theta = \left( \frac{1}{3} \right)^2 = \frac{1}{9} \] ### Step 2: Substitute into the Pythagorean identity Now, substitute \( \sin^2 \theta \) into the Pythagorean identity: \[ \frac{1}{9} + \cos^2 \theta = 1 \] ### Step 3: Solve for \( \cos^2 \theta \) To isolate \( \cos^2 \theta \), subtract \( \frac{1}{9} \) from both sides: \[ \cos^2 \theta = 1 - \frac{1}{9} \] To perform the subtraction, convert 1 into a fraction with a denominator of 9: \[ 1 = \frac{9}{9} \] Now, perform the subtraction: \[ \cos^2 \theta = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \] ### Step 4: Take the square root Now, take the square root of both sides to find \( \cos \theta \): \[ \cos \theta = \pm \sqrt{\frac{8}{9}} = \pm \frac{\sqrt{8}}{3} \] ### Step 5: Simplify \( \sqrt{8} \) We can simplify \( \sqrt{8} \): \[ \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2} \] Thus, we have: \[ \cos \theta = \pm \frac{2\sqrt{2}}{3} \] ### Final Answer Therefore, the value of \( \cos \theta \) is: \[ \cos \theta = \pm \frac{2\sqrt{2}}{3} \]

To find the value of \( \cos \theta \) given that \( \sin \theta = \frac{1}{3} \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] ### Step 1: Calculate \( \sin^2 \theta \) ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

1+sin^(2)theta=3sin theta cos theta

If sin theta+cos theta=1, then sin theta cos theta is equal to :

Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .

If sin theta_(1)+sin theta_(2)+sin theta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3) is equal to 3(b)2(c)1(d)0

Prove that (sin theta + sin 3theta+ sin 5 theta + sin 7theta)/(cos theta + cos 3theta + cos 5 theta + cos 7theta) = (tan 3theta + tan theta)/(1 - tan 3theta tan theta) .