If `y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)/(dx)` will be :
A
`cosx+(2)/(x)+e^(2x)`
B
`cos x+(2)/(x)+2e^(2x)`
C
`-cos x+(2)/(x^(2))+e^(2x)`
D
`-ocs x-(2)/(x^(2))+2e^(2x)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function given by
\[
y = \sin(x) + \ln(x^2) + e^{2x},
\]
we will differentiate each term separately.
### Step 1: Differentiate \( \sin(x) \)
The derivative of \( \sin(x) \) is
\[
\frac{d}{dx}(\sin(x)) = \cos(x).
\]
### Step 2: Differentiate \( \ln(x^2) \)
Using the property of logarithms that states \( \ln(a^b) = b \ln(a) \), we can rewrite \( \ln(x^2) \) as
\[
\ln(x^2) = 2\ln(x).
\]
Now, we differentiate \( 2\ln(x) \):
\[
\frac{d}{dx}(2\ln(x)) = 2 \cdot \frac{1}{x} = \frac{2}{x}.
\]
### Step 3: Differentiate \( e^{2x} \)
Using the chain rule, the derivative of \( e^{2x} \) is
\[
\frac{d}{dx}(e^{2x}) = e^{2x} \cdot \frac{d}{dx}(2x) = e^{2x} \cdot 2 = 2e^{2x}.
\]
### Step 4: Combine the derivatives
Now, we combine all the derivatives we found:
\[
\frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x}.
\]
### Final Answer
Thus, the derivative \( \frac{dy}{dx} \) is
\[
\frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x}.
\]
---
To find the derivative \( \frac{dy}{dx} \) for the function given by
\[
y = \sin(x) + \ln(x^2) + e^{2x},
\]
we will differentiate each term separately.
...