Home
Class 11
PHYSICS
If y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)...

If `y=sin(x)+"in"(x^(2))+e^(2x)"then"(dy)/(dx)` will be :

A

`cosx+(2)/(x)+e^(2x)`

B

`cos x+(2)/(x)+2e^(2x)`

C

`-cos x+(2)/(x^(2))+e^(2x)`

D

`-ocs x-(2)/(x^(2))+2e^(2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function given by \[ y = \sin(x) + \ln(x^2) + e^{2x}, \] we will differentiate each term separately. ### Step 1: Differentiate \( \sin(x) \) The derivative of \( \sin(x) \) is \[ \frac{d}{dx}(\sin(x)) = \cos(x). \] ### Step 2: Differentiate \( \ln(x^2) \) Using the property of logarithms that states \( \ln(a^b) = b \ln(a) \), we can rewrite \( \ln(x^2) \) as \[ \ln(x^2) = 2\ln(x). \] Now, we differentiate \( 2\ln(x) \): \[ \frac{d}{dx}(2\ln(x)) = 2 \cdot \frac{1}{x} = \frac{2}{x}. \] ### Step 3: Differentiate \( e^{2x} \) Using the chain rule, the derivative of \( e^{2x} \) is \[ \frac{d}{dx}(e^{2x}) = e^{2x} \cdot \frac{d}{dx}(2x) = e^{2x} \cdot 2 = 2e^{2x}. \] ### Step 4: Combine the derivatives Now, we combine all the derivatives we found: \[ \frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is \[ \frac{dy}{dx} = \cos(x) + \frac{2}{x} + 2e^{2x}. \] ---

To find the derivative \( \frac{dy}{dx} \) for the function given by \[ y = \sin(x) + \ln(x^2) + e^{2x}, \] we will differentiate each term separately. ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y =sin (x^(2) +x) ,then (dy)/(dx) =

If y=x^(e-x^(2)) then (dy)/(dx) is

If y= 2 ^(sin x) -sin ^(2)x ,then (dy)/(dx) =

y=sin^(n)(x^(2)e^(2x)), find (dy)/(dx)

If y=e^(x)x^(2) then (dy)/(dx)=

If y=e^(sin^(2)x) then (dy)/(dx)=

If y=e^(3x) sin ^(2)x log x ,then (dy)/(dx)=

If y=log _(e) x+sin x+e^(x) then (dy)/(dx) is:

If y=e^(xsin^(2)x)+sin x^(x), find (dy)/(dx) .

"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=