Home
Class 11
PHYSICS
If y=tan x. cos^(2)x then (dy)/(dx) will...

If `y=tan x. cos^(2)x` then `(dy)/(dx)` will be-

A

`1+2sin^(2)x`

B

`1-2sin^(2)x`

C

`1`

D

`2 sin^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the derivative of \( y = \tan x \cdot \cos^2 x \), we will follow these steps: ### Step 1: Rewrite the function in a simpler form We know that \( \tan x = \frac{\sin x}{\cos x} \). Therefore, we can rewrite \( y \) as: \[ y = \tan x \cdot \cos^2 x = \frac{\sin x}{\cos x} \cdot \cos^2 x = \sin x \cdot \cos x \] ### Step 2: Differentiate using the product rule Now we need to differentiate \( y = \sin x \cdot \cos x \). We will use the product rule, which states that if \( y = u \cdot v \), then: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Here, let \( u = \sin x \) and \( v = \cos x \). ### Step 3: Find the derivatives of \( u \) and \( v \) We know: \[ \frac{du}{dx} = \cos x \quad \text{and} \quad \frac{dv}{dx} = -\sin x \] ### Step 4: Apply the product rule Now substituting into the product rule: \[ \frac{dy}{dx} = \sin x \cdot (-\sin x) + \cos x \cdot \cos x \] This simplifies to: \[ \frac{dy}{dx} = -\sin^2 x + \cos^2 x \] ### Step 5: Use the Pythagorean identity Recall that \( \cos^2 x = 1 - \sin^2 x \). Substituting this into our derivative gives: \[ \frac{dy}{dx} = -\sin^2 x + (1 - \sin^2 x) \] This simplifies to: \[ \frac{dy}{dx} = 1 - 2\sin^2 x \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 - 2\sin^2 x \]

To solve the problem of finding the derivative of \( y = \tan x \cdot \cos^2 x \), we will follow these steps: ### Step 1: Rewrite the function in a simpler form We know that \( \tan x = \frac{\sin x}{\cos x} \). Therefore, we can rewrite \( y \) as: \[ y = \tan x \cdot \cos^2 x = \frac{\sin x}{\cos x} \cdot \cos^2 x = \sin x \cdot \cos x \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y = (tan x)^(x) , then (dy)/(dx) =

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If x=y tan((x)/(2)), then (dy)/(dx)=

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y = x tan y , then (dy)/(dx) is equal to

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]