Home
Class 11
PHYSICS
If a function is written as : y(1)=sin...

If a function is written as `:`
`y_(1)=sin(4x^(2)) &` another function is `y_(2)=ln(x^(3))` then `:`
`(dy_(1))/(dx)`, will be `:`

A

`8x cos (4x^(2))`

B

`cos (4x^(2))`

C

`-cos(4x^(2))`

D

`-8x cos(4x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

`y_(1)=sin4x^(2)`,
`(dy_(1))/(dx)=cos4x^(2)(8x)=8xcos4x^(2)`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If a function is written as : y_(1)=sin(4x^(2)) & another function is y_(2)=ln(x^(3)) then : (dy_(2))/(dx) will be

If sin(x+y)+cos(2x+2y)=ln(3x+3y) ,then (dy)/(dx) is

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^(2))

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

Find (dy)/(dx) for the function: y=e^(sin x^(2))

If the function y= sin^(-1)x, "then" (1-x^(2))(d^(2)y)/(dx^(2)) is equal to

If y=log((1)/(x)) then value of (dy)/(dx) at x=2 is