Home
Class 11
PHYSICS
If a function is written as : y(1)=sin...

If a function is written as `:`
`y_(1)=sin(4x^(2)) &` another function is `y_(2)=ln(x^(3))` then `:`
`(dy_(2))/(dx)` will be

A

`(1)/(x^(3))`

B

`(3)/(x)`

C

`-(1)/(x^(3))`

D

`(3)/(x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`y_(2)=lnx^(3)rArr(dy_(2))/(dx)=(3x^(2))/(x^(3))=(3)/(x)`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 2 PHYSICS|1 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If a function is written as : y_(1)=sin(4x^(2)) & another function is y_(2)=ln(x^(3)) then : (dy_(1))/(dx) , will be :

If sin(x+y)+cos(2x+2y)=ln(3x+3y) ,then (dy)/(dx) is

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^(2))

Find (dy)/(dx) for the function: y=e^(sin x^(2))

If x^(2) +sin y =y^(2) +log )(x+y) ,then (dy)/(dx) =

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

y=sin^(2)(log(2x+3)), find (dy)/(dx)

Find (dy)/(dx) as a function of x y=(2x+1)^(5)

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If x^(2)y^(2)=log(x+y)+sin e^(x)find(dy)/(dx)