Home
Class 12
MATHS
If A=[ [0,-tan((alpha)/2)],[tan(alpha/2...

If ` A=[ [0,-tan((alpha)/2)],[tan(alpha/2),0]] then (I-A)[[cosalpha,-sinalpha],[sinalpha,cosalpha]]` =

Text Solution

Verified by Experts

` A=[ [0,-tan((alpha)/2)],[tan(alpha/2),0]]`
I`=[[1,0],[0,1]]`
Consider (I `+` A ) `=``[[1,0],[0,1]]` `+` ` [ [0,-tan((alpha)/2)],[tan(alpha/2),0]]``=``[ [1,-tan((alpha)/2)],[tan(alpha/2),1]]`

(I `-` A ) `=``[[1,0],[0,1]]` `-` ` [ [0,-tan((alpha)/2)],[tan(alpha/2),0]]``=``[ [1,tan((alpha)/2)],[-tan(alpha/2),1]]`

(I `-` A )`[[cosalpha,-sinalpha],[sinalpha,cosalpha]]``=``[ [1,tan((alpha)/2)],[-tan(alpha/2),1]]``[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`

`=>[[cosα+tan(α/2)sinα,−sinα2+tan(α/2)cosα],[tan(α/2)cosα+sinα​,sinαtan(α/2)+cosα​]]`

`= [[ 1−tan ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

costheta-sintheta=cosalpha-sinalpha