Home
Class 11
PHYSICS
If theta is the angle between unit vecto...

If `theta` is the angle between unit vectors `vecA` and `vecB`, then `((1-vecA.vecB))/(1+vecA.vecB))` is equal to

A

`tan^(2)(theta//2)`

B

`sin^(2)(theta//2)`

C

`cot^(2)(theta//2)`

D

`cos^(2)(theta//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(\frac{1 - \vec{A} \cdot \vec{B}}{1 + \vec{A} \cdot \vec{B}}\) given that \(\vec{A}\) and \(\vec{B}\) are unit vectors and \(\theta\) is the angle between them. ### Step-by-Step Solution: 1. **Understanding the Dot Product**: Since \(\vec{A}\) and \(\vec{B}\) are unit vectors, the dot product \(\vec{A} \cdot \vec{B}\) can be expressed as: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = 1 \cdot 1 \cdot \cos \theta = \cos \theta \] 2. **Substituting the Dot Product**: We substitute \(\vec{A} \cdot \vec{B}\) in the expression: \[ \frac{1 - \vec{A} \cdot \vec{B}}{1 + \vec{A} \cdot \vec{B}} = \frac{1 - \cos \theta}{1 + \cos \theta} \] 3. **Using Trigonometric Identities**: We can use the trigonometric identities: \[ 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \] \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Substituting these identities into our expression gives: \[ \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{2 \sin^2\left(\frac{\theta}{2}\right)}{2 \cos^2\left(\frac{\theta}{2}\right)} \] 4. **Simplifying the Expression**: The \(2\)s in the numerator and denominator cancel out: \[ \frac{\sin^2\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right)} = \tan^2\left(\frac{\theta}{2}\right) \] 5. **Final Result**: Therefore, the expression simplifies to: \[ \frac{1 - \vec{A} \cdot \vec{B}}{1 + \vec{A} \cdot \vec{B}} = \tan^2\left(\frac{\theta}{2}\right) \] ### Conclusion: The final result is: \[ \frac{1 - \vec{A} \cdot \vec{B}}{1 + \vec{A} \cdot \vec{B}} = \tan^2\left(\frac{\theta}{2}\right) \]

To solve the problem, we need to evaluate the expression \(\frac{1 - \vec{A} \cdot \vec{B}}{1 + \vec{A} \cdot \vec{B}}\) given that \(\vec{A}\) and \(\vec{B}\) are unit vectors and \(\theta\) is the angle between them. ### Step-by-Step Solution: 1. **Understanding the Dot Product**: Since \(\vec{A}\) and \(\vec{B}\) are unit vectors, the dot product \(\vec{A} \cdot \vec{B}\) can be expressed as: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = 1 \cdot 1 \cdot \cos \theta = \cos \theta ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

If theta is the angle between unit vectors veca and vecb then sin(theta/2) is (A) 1/2|veca-vecb| (B) 1/2|veca+vecb| (C) 1/2|vecaxxvecb| (D) 1/sqrt(2)sqrt(1-veca.vecb)

If the angle between the vectors vecA and vecB is theta, the value of the product (vecB xx vecA) * vecA is equal to

If theta is the angle between the unit vectors veca and vecb , then prove that i. cos((theta)/2)=1/2|veca+vecb| ii. sin (theta/2)=1/2|veca-vecb|

If theta is the angle between the unit vectors veca and vecb , then prove that i. cos((theta)/2)=1/2|veca+vecb| ii. sin (theta/2)=1/2|veca-vecb|

Assertion: If theta be the angle between vecA and vecB then tan theta=(vecAxxvecB)/(vecA.vecB) Reason: vecAxxvecB is perpendicular to vecA.vecB

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

Find the angle between unit vector veca and vecb so that sqrt(3) veca - vecb is also a unit vector.

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

NARAYNA-VECTORS-LEVEL-I (C.W)
  1. Two billiard balls are moving on a table and the component velocities ...

    Text Solution

    |

  2. If vecA=2hati-3hatj+4hatk, its components in YZ-plane and ZX-plane are...

    Text Solution

    |

  3. A car weighing 100kg is on a slope that makes and angle 30^(@) with th...

    Text Solution

    |

  4. A room has dimensions 3mxx4mxx5m. A fly starting at one corner ends up...

    Text Solution

    |

  5. If vecP=hati+2hatj+6hatk, its direction cosines are

    Text Solution

    |

  6. The value of 'm', if hati+2hatJ-3hatk is parallel to 3hati+mhatj-9hatk...

    Text Solution

    |

  7. A force 2hati+hatj-hatk newton acts on a body which is initially at re...

    Text Solution

    |

  8. When a force vector vecF=(hati+2hatj+hatk)N acts on a body and produce...

    Text Solution

    |

  9. The angle between the two vectors vecA=hati+2hatj-hatk and vecBi=-hati...

    Text Solution

    |

  10. In a righht angled triangle the three vectors veca,vecb and vecc add t...

    Text Solution

    |

  11. A vector parallel to the vector (hati+2hatj) and having magnitude 3sqr...

    Text Solution

    |

  12. If vec2hati+3hatj and vecB=2hatj+3hatk the component of vecB along vec...

    Text Solution

    |

  13. if the vectors P = alphahati+alphaj+3hatk and Q = alphahati - 2 hatj -...

    Text Solution

    |

  14. A force of 2i+3j+2k N acts on a body for 4 and produces a displacement...

    Text Solution

    |

  15. If theta is the angle between unit vectors vecA and vecB, then ((1-vec...

    Text Solution

    |

  16. Find the torque of a force vecF=3hati+2hatj+hatk acting at the point v...

    Text Solution

    |

  17. The area of the triangle whose adjacent sides are represented by the v...

    Text Solution

    |

  18. The magnitude of scalar and vector products of two vectors are 48sqrt(...

    Text Solution

    |

  19. The diagonals of a parallelogram are vecA=2hati-3hatj+hatk and vecB=-2...

    Text Solution

    |

  20. Deduce the condition for the vectors 2hati + 3hatj - 4hatk and 3hati -...

    Text Solution

    |